PENGERTIAN TURUNAN DAN SIFAT-SIFATNYA + CONTOH SOALNYA

Nama : Muhammad Hilmi Faiz / 23
Kelas : XI IPS 2

PENGERTIAN TURUNAN DAN SIFAT-SIFATNYA BERSAMA CONTOH SOALNYA


ASSALAMUALAIKUM WR.WB.

Halo Semuanya!!!!!!!
Bagaimana kabar kalian? Sehat? semoga sehat yah......
BTW Di Blog ini kita bakal belajar Pengertian turunan dan sifat-sifatnya loh..... udah siap kan? kalau udah lets check it out!!!

PENGERTIAN TURUNAN

Turunan adalah suatu perhitungan terhadap perubahan nilai fungsi karena perubahan nilai input (variabel). Turunan dapat disebut juga sebagai diferensial dan proses dalam menentukan turunan suatu fungsi disebut sebagai diferensiasi.

Misal fungsi f memetakan x ke y atau y=f(x), x sebagai variabel bebas dan y sebagai variabel terikat. turunan  y=f(x) terhadap x adalah:


SIFAT-SIFAT TURUNAN

1. Jika f(x)=c dimana c adalah konstanta, maka turunannya adalahf'(x)=0

Contoh:\begin{aligned} f(x)&=2 &\rightarrow f'(x)=0\\ f(x)&=13 &\rightarrow f'(x)=0\\ f(x)&=100 &\rightarrow f'(x)=0 \end{aligned}


2. Jika f(x)=cx, maka turunannya adalahf'(x)=c
Contoh:\begin{aligned} f(x)&=2x &\rightarrow &f'(x)=2\\ f(x)&=13x &\rightarrow &f'(x)=13\\ f(x)&=100x &\rightarrow &f'(x)=100 \end{aligned}
3. Jika f(x)=x^n maka turunannya adalahf'(x)=nx^{n-1}
Contoh:\begin{aligned} f(x)&=x^4 &\rightarrow &f'(x)=4x^3\\ f(x)&=x^3 &\rightarrow &f'(x)=3x^2\\ f(x)&=x^2 &\rightarrow &f'(x)=2x \end{aligned}
4. Jika f(x)=cx^nmaka turunannya adalahf'(x)=cnx^{n-1}
Contoh:\begin{aligned} f(x)&=2x^4 &\rightarrow &f'(x)=8x^3\\ f(x)&=13x^3 &\rightarrow &f'(x)=39x^2\\ f(x)&=100x^2 &\rightarrow &f'(x)=200x \end{aligned}
5. Jika f(x)=c\,u(x) maka turunannya adalahf'(x)=c\,u'(x)
Contoh:\begin{aligned} f(x)&=4\ln{x}&\rightarrow &f'(x)=4\frac{1}{x}\\ f(x)&=3\cos{x}&\rightarrow &f'(x)=3\sin{x}\\ f(x)&=2\sin{x}&\rightarrow &f'(x)=-2\cos{x} \end{aligned}
6. Jika f(x)=u(x)\pm v(x) maka turunannya adalahf'(x)=u'(x)\pm v'(x)
Contoh:\begin{aligned} f(x)&=2x+x^2&\rightarrow &f'(x)=2+2x\\ f(x)&=x^4-x^3&\rightarrow &f'(x)=4x^3-3x^2\\ f(x)&=\sin{x}+\cos{x}&\rightarrow &f'(x)=\cos{x}-\sin{x} \end{aligned}
7. Jika f(x)=u(x)v(x) maka turunannya adalahf'(x)=u'(x)v(x)+u(x)v'(x)
Contoh:f(x)=x^4x^3Misalkan u(x)=x^4 dan v(x)=x^3, maka u'(x)=4x^3 dan v'(x)=3x^2, sehingga\begin{aligned} f'(x)&=(4x^3)(x^3)+(x^4)(3x^2)\\ &=4x^6+3x^6\\ &=7x^6 \end{aligned}
8. Jika f(x)=\displaystyle\frac{u(x)}{v(x)} maka turunannya adalahf'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}
Contoh:f(x)=\frac{x^4}{x^3}Misalkan u(x)=x^4 dan v(x)=x^3, maka u'(x)=4x^3 dan v'(x)=3x^2, sehingga\begin{aligned} f'(x)&=\frac{(4x^3)(x^3)-(x^4)(3x^2)}{(x^3)^2}\\ &=\frac{4x^6-3x^6}{x^6}\\ &=1 \end{aligned}
9. Jika f(x)={u(x)}^n maka turunannya adalahf'(x)=n(u(x))^{n-1}u'(x)
Contoh:f(x)=(2x+x^2)^4Misalkan u(x)=2x+x^2, sehingga u'(x)=2+2x, makaf'(x)=4\left(2x+x^2\right)^3(2+2x)

Komentar